题目内容
如图,已知在四边形ABCD中,AB=20cm,BC=15 cm,CD=7 cm,AD=24 cm,∠ABC=90°。猜想∠A与∠C关系并加以证明.
![]()
![]()
180°
【解析】
试题分析:连接AC.首先根据勾股定理求得AC的长,再根据勾股定理的逆定理求得∠D=90°,进而求出∠A+∠C=180°.
试题解析:∠A+∠C=180°
证明如下:
如图,连接AC.
![]()
![]()
∵AB=20cm,BC=15cm,∠ABC=90°,
∴由勾股定理,得
AC2=AB2+BC2=625(cm2).
又∵在△ADC中,CD=7cm,AD=24cm,
∴CD2+AD2=AC2,
∴∠D=90°.
∴∠A+∠C=360°-180°=180°.
【难度】较易
练习册系列答案
相关题目