题目内容

如图,在矩形ABCD中,以点D为圆心,DA长为半径画弧,交CD于点E,以点A为圆心,AE长为半径画弧,恰好经过点B,连结BE、AE.求∠EBC的度数.
考点:矩形的性质,等腰直角三角形
专题:
分析:根据题意可得AD=DE,AE=AB,再根据矩形的性质可得∠D=∠ABC=∠DAB=90°,然后根据等腰三角形的性质分别算出∠DAE和∠EAB,再根据叫的和差关系可得答案.
解答:解:由题意得:AD=DE,AE=AB,
∵四边形ABCD是矩形,
∴∠D=∠ABC=∠DAB=90°,
∵AD=DE,
∴∠DAE=45°,
∴∠EAB=45°,
∵AE=AB,
∴∠EBA=∠AEB=
180°-45°
2
=67.5°,
∴∠EBC=90°-67.5°=22.5°.
点评:此题主要考查了矩形的性质,以及等腰三角形的性质,关键是掌握矩形的四个角都是直角.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网