题目内容

17.解下列方程组:
(1)$\left\{\begin{array}{l}{3x-y=7}\\{5x+2y=8}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{\frac{x}{3}+\frac{y}{5}=1}\\{3(x+y)+2(x-3y)=15}\end{array}\right.$.

分析 (1)方程组利用加减消元法求出解即可;
(2)方程组整理后,利用加减消元法求出解即可.

解答 解:(1)$\left\{\begin{array}{l}{3x-y=7①}\\{5x+2y=8②}\end{array}\right.$,
①×2+②得:11x=22,
解得:x=2,
把x=2代入①得:6-y=7,
解得:y=-1,
则原方程组的解为$\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$;
(2)方程组整理得:$\left\{\begin{array}{l}{5x+3y=15①}\\{5x-3y=15②}\end{array}\right.$,
①+②得:10x=30,即x=3,
①-②得:6y=0,即y=0,
则方程组的解为$\left\{\begin{array}{l}{x=3}\\{y=0}\end{array}\right.$.

点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网