题目内容

16.如图,在平行四边形ABCD中,E为AD上一点,∠EBC=40°,且BE=BC,CE=CD,则∠A=110°.

分析 先根据平行四边形的性质得出∠2=∠3,再根据BE=BC,CE=CD,∠1=∠2,∠3=∠D,进而得出∠1=∠2=∠3=∠D,求出∠D=70°,即可得出∠A的度数.

解答 解:如图所示:
∵四边形ABCD是平行四边形,
∴AD∥BC,CD=AB,AB∥CD,
∴∠2=∠3,∠A+∠D=180°,
∵BE=BC,CE=CD,
∴BE=BC=10,CE=CD=6,∠1=∠2,∠3=∠D,
∴∠1=∠2=∠3=∠D,
∵∠EBC=40°,
∴∠D=∠1=∠3=70°,
∴∠A=180°-70°=110°;
故答案为:110°.

点评 本题考查了等腰三角形的性质及平行四边形的性质,根据题意得出∠1=∠2=∠3=∠D是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网