题目内容

如图①,AB为⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C为DE延长线上一点,且CE=CB.

(1)求证:BC为⊙O的切线;

(2)连接AE并延长与BC的延长线交于点G(如图②所示).若AB=,CD=9,求线段BC和EG的长.

(1)证明见解析(2) 【解析】试题分析:(1)连接OE,OC,即可证明△OEC≌△OEC,根据DE与⊙O相切于点E得到OEC=90°,从而证得∠OBC=90°,则BC是圆的切线. (2)先求线段BC的长,过D作DF⊥BG于F,则四边形ABFD是矩形,在Rt△DCF中,由切线长定理知AD=DE、CE=BC,利用勾股定理可求得CF的长,设AD=DE=BC,根据CD=9,列出方程即可求出x...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网