题目内容

已知正方形ABCD的边长为2,点M是BC的中点,P是线段MC上的一个动点,P不与M和C重合,以AB为直径作⊙O,过点P作⊙O的切线交AD于点F,切点为E.求四边形CDFP的周长.
考点:切线长定理
专题:
分析:利用切线长定理得出四边形CDFP的周长为AD+DC+CB即可得出答案.
解答:解:∵四边形ABCD是正方形,
∴∠A=∠B=90°,
∴OA⊥AD,OB⊥BC,
∵OA,OB是半径,
∴AF、BP都是⊙O的切线,
又∵PF是⊙O的切线,
∴FE=FA,PE=PB,
∴四边形CDFP的周长为AD+DC+CB=2×3=6.
点评:此题主要考查了切线长定理,得出四边形CDFP的周长为AD+DC+CB是解题关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网