题目内容

15.勾股定理神秘而每秒,它的证法多样,其巧妙各有不同,其中的”面积法“给小聪明以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:

将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2
证明:连接DB,过点D作BC边上的高DF,
则DF=EC=b-A.
∵S四边形ADCB=S△ACD+S△ABC=$\frac{1}{2}$b2+$\frac{1}{2}$ab.
又∵S四边形ADCB=S△ADB+S△DCB=$\frac{1}{2}$c2+$\frac{1}{2}$a(b-a)
∴$\frac{1}{2}$b2+$\frac{1}{2}$ab=$\frac{1}{2}$c2+$\frac{1}{2}$a(b-a)
∴a2+b2=c2
请参照上述证法,利用图2完成下面的证明:
将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.
求证:a2+b2=c2
证明:连结BD
∵S多边形ACBED=$\frac{1}{2}ab$+$\frac{1}{2}$b2+$\frac{1}{2}$ab
又∵S多边形ACBED=$\frac{1}{2}$ab+$\frac{1}{2}$c2+$\frac{1}{2}$a(b-a)
∴$\frac{1}{2}ab$+$\frac{1}{2}$b2+$\frac{1}{2}$ab=$\frac{1}{2}$ab+$\frac{1}{2}$c2+$\frac{1}{2}$a(b-a)
∴a2+b2=c2

分析 连接BD,多边形ACBED的面积=△ABC的面积+△ABE的面积+△ADE的面积=$\frac{1}{2}ab$+$\frac{1}{2}$b2+$\frac{1}{2}$ab,多边形ACBED的面积=△ABC的面积+△ABD的面积+△BDE的面积=$\frac{1}{2}$ab+$\frac{1}{2}$c2+$\frac{1}{2}$a(b-a),得出$\frac{1}{2}ab$+$\frac{1}{2}$b2+$\frac{1}{2}$ab=$\frac{1}{2}$ab+$\frac{1}{2}$c2+$\frac{1}{2}$a(b-a),即可得出结论.

解答 解:连接BD,如图所示:
∵多边形ACBED的面积=△ABC的面积+△ABE的面积+△ADE的面积=$\frac{1}{2}ab$+$\frac{1}{2}$b2+$\frac{1}{2}$ab,
又∵多边形ACBED的面积=△ABC的面积+△ABD的面积+△BDE的面积=$\frac{1}{2}$ab+$\frac{1}{2}$c2+$\frac{1}{2}$a(b-a),
∴$\frac{1}{2}ab$+$\frac{1}{2}$b2+$\frac{1}{2}$ab=$\frac{1}{2}$ab+$\frac{1}{2}$c2+$\frac{1}{2}$a(b-a),
整理得:a2+b2=c2
故答案为:BD,$\frac{1}{2}ab$+$\frac{1}{2}$b2+$\frac{1}{2}$ab,$\frac{1}{2}$ab+$\frac{1}{2}$c2+$\frac{1}{2}$a(b-a),$\frac{1}{2}ab$+$\frac{1}{2}$b2+$\frac{1}{2}$ab=$\frac{1}{2}$ab+$\frac{1}{2}$c2+$\frac{1}{2}$a(b-a).

点评 本题考查了勾股定理的证明、三角形面积的计算方法、多边形面积的计算方法;熟练掌握勾股定理的证明方法,运用面积法证明勾股定理是常用的方法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网