题目内容

3.计算:
(1)$\frac{{x}^{2}+x}{x}•\frac{2x}{x+1}$
(2)(1+$\frac{1}{x}$)$•\frac{x}{{x}^{2}-1}$
(3)$\frac{x}{x-y}•\frac{{y}^{2}}{x+y}-\frac{{x}^{4}y}{{x}^{4}-{y}^{4}}÷\frac{{x}^{2}}{{x}^{2}+{y}^{2}}$
(4)$\frac{a+3}{{a}^{2}-2a+1}$÷$(1+\frac{4}{a-1})$.

分析 (1)先因式分解,再约分即可;
(2)先计算括号里面的,再因式分解,再约分即可;
(3)先因式分解,再约分,最后算加减即可;
(4)先算括号里面的,再因式分解,约分即可;

解答 解:(1)原式=$\frac{x(x+1)}{x}$•$\frac{2x}{x+1}$
=2x;

(2)原式=$\frac{x+1}{x}$•$\frac{x}{(x+1)(x-1)}$
=$\frac{1}{x-1}$;

(3)原式=$\frac{{xy}^{2}}{(x-y)(x+y)}$-$\frac{{x}^{4}y}{{(x}^{2}+{y}^{2}{)(x}^{2}-{y}^{2})}$•$\frac{{x}^{2}+{y}^{2}}{{x}^{2}}$
=$\frac{{xy}^{2}}{(x-y)(x+y)}$-$\frac{{x}^{2}y}{{x}^{2}-{y}^{2}}$
=$\frac{{xy}^{2}-{x}^{2}y}{(x-y)(x+y)}$
=$\frac{-xy(x-y)}{(x-y)(x+y)}$
=-$\frac{xy}{x+y}$;

(4)原式=$\frac{a+3}{(a-1)^{2}}$÷$\frac{a+3}{a-1}$
=$\frac{a+3}{{(a-1)}^{2}}$•$\frac{a-1}{a+3}$
=$\frac{1}{a-1}$.

点评 本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网