题目内容
18.| A. | $\frac{25π}{8}$cm2 | B. | $\frac{25π}{4}$cm2 | C. | $\frac{25π}{2}$cm2 | D. | 25πcm2 |
分析 根据阴影部分的面积是:S扇形BCB1+S△CB1A1-S△ABC-S扇形CAA1,分别求得:扇形BCB1的面积,S△CB1A1,S△ABC以及扇形CAA1的面积,即可求解.
解答 解:在Rt△ABC中,BC=$\sqrt{A{C}^{2}+A{B}^{2}}$=$\sqrt{29}$,
扇形BCB1的面积是=$\frac{45π×(\sqrt{29})^{2}}{360}$=$\frac{29π}{8}$,
S△CB1A1=$\frac{1}{2}$×5×2=5;
S扇形CAA1=$\frac{45π×{2}^{2}}{360}$=$\frac{π}{2}$.
故S阴影部分=S扇形BCB1+S△CB1A1-S△ABC-S扇形CAA1=$\frac{29π}{8}$+5-5-$\frac{π}{2}$=$\frac{25π}{8}$.
故选A.
点评 本题考查了扇形的面积的计算,正确理解阴影部分的面积=S扇形BCB1+S△CB1A1-S△ABC-S扇形CAA1是关键.
练习册系列答案
相关题目
10.下列各式计算正确的是( )
| A. | $\sqrt{16}$=±4 | B. | $\sqrt{{a}^{2}}$=a | C. | $\sqrt{8}$-$\sqrt{2}$=$\sqrt{6}$ | D. | ($\sqrt{3}$)2=3 |
7.单项式-$\frac{1}{3}{x}^{3}{y}^{2}$的次数是( )
| A. | 3 | B. | 4 | C. | 5 | D. | 6 |