题目内容
已知二次函数y有最大值4,且图象与x轴两交点间的距离是8,对称轴为x=-3,求此二次函数的解析式.
提示:y=-(x+3)2+4=-x2-x+.
当路程S一定时,速度υ与时间t之间的函数关系是 ( )
A.正比例函数 B.反比例函数 C.一次函数 D.二次函数
已知抛物线y=(x-1)2+a-l的顶点A在直线y=-x+3上,直线y=-x+3与x轴的交点为B,求△AOB的面积(O为坐标原点).
已知抛物线y=ax2+bx+c的大致图象如图2 - 80所示,试确定a,b,c,b2-4ac及a+b+c的符号.
如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上,C、D两点不重合,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是( )
A.
B.
C.
D.
给定直线l:y=kx,抛物线C:y=ax2+bx+1.
(1)当b=1时,l与C相交于A,B两点,其中A为C的顶点,B与A关于原点对称,求a的值;
(2)若把直线l向上平移k2+1个单位长度得到直线r,则无论非零实数k取何值,直线r与抛物线C都只有一个交点.
①求此抛物线的解析式;
②若P是此抛物线上任一点,过P作PQ∥y轴且与直线y=2交于Q点,O为原点.求证:OP=PQ.
已知抛物线y=4x2-11x-3,则它的对称轴是 ,与x轴的交点坐标是 ,与y轴的交点坐标是 .
若抛物线y=kx2-2x+l与x轴有两个交点,则k的取值范围是 .
如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是 .