ÌâÄ¿ÄÚÈÝ
12£®ÔÚÒ»×éʵÊý£¬$\sqrt{9}$£¬$\sqrt{2}$£¬$\frac{2}{3}$£¬1+¦Ð£¬-$\frac{7}{3}$£¬-¦Ð£¨1£©½«ËüÃÇ·ÖÀ࣬ÌîÔÚÏàÓ¦µÄÀ¨ºÅÄÚ£º
ÓÐÀíÊý{$\sqrt{9}$£¬$\frac{2}{3}$£¬-$\frac{7}{3}$¡}£»
ÎÞÀíÊý{$\sqrt{2}$£¬1+¦Ð£¬-¦Ð¡}£»
£¨2£©ÇëÄãÑ¡³ö2¸öÓÐÀíÊýºÍ2¸öÎÞÀíÊý£¬ÔÙÓá°+£¬-£¬¡Á£¬¡Â¡±ÖеÄ3ÖÖ²»Í¬µÄÔËËã·ûºÅ½«Ñ¡³öµÄ4¸öÊý½øÐÐÔËË㣨¿ÉÒÔÓÃÀ¨ºÅ£©£¬Ê¹µÃÔËËãµÄ½á¹ûÊÇÒ»¸öÕýÕûÊý£®
·ÖÎö £¨1£©ÊýµÄ·ÖÀàÖØÊµÖʲ»ÖØÐÎʽ£¬ËùÒÔÐèÏÈ»¯¼òÔÙ·ÖÀࣻ
£¨2£©±¾ÌâÄ¿´ð°¸²»Î¨Ò»£¬ÓÉÓÚÒªÇóÔËËãµÄ½á¹ûÊÇÒ»¸öÕýÕûÊý£¬ËùÒÔÎÞÀíÊýÖ»ÄÜÈ¡1+¦Ð¡¢-¦Ð£®×¢ÒâÌâĿҪÇó£®
½â´ð ½â£º£¨1£©ÒòΪ$\sqrt{9}=3$£¬ËùÒÔÓÐÀíÊýÓУº$\sqrt{9}$£¬$\frac{2}{3}$£¬-$\frac{7}{3}$£»ÎÞÀíÊýÓУº$\sqrt{2}$£¬1+¦Ð£¬-¦Ð£®
¹Ê£ºÓÐÀíÊý{ $\sqrt{9}$£¬$\frac{2}{3}$£¬-$\frac{7}{3}$ ¡}£»
ÎÞÀíÊý{$\sqrt{2}$£¬1+¦Ð£¬-¦Ð¡}£»
£¨2£©´ð°¸²»Î¨Ò»£ºÁ½¸öÓÐÀíÊýÊÇ£º$\frac{2}{3}$£¬-$\frac{7}{3}$£»Á½¸öÎÞÀíÊýÊÇ£º1+¦Ð£¬-¦Ð£®
[1+¦Ð+£¨-¦Ð£©]¡Á[$\frac{2}{3}$-£¨-$\frac{7}{3}$£©]
=1¡Á3=3£®
µãÆÀ ±¾Ì⿼²éÁËʵÊýµÄ·ÖÀàÒÔ¼°ÊµÊýµÄ»ìºÏÔËË㣮ʵÊýµÄ·ÖÀࣺʵÊý$\left\{\begin{array}{l}{ÓÐÀíÊý\left\{\begin{array}{l}{ÕûÊý\left\{\begin{array}{l}{ÕýÕûÊý}\\{0}\\{¸ºÕûÊý}\end{array}\right.}\\{·ÖÊý\left\{\begin{array}{l}{Õý·ÖÊý}\\{¸º·ÖÊý}\end{array}\right.}\end{array}\right.}\\{ÎÞÀíÊý}\end{array}\right.$
| A£® | $\frac{y}{x}$=1 | B£® | $\frac{y}{x}$=$\frac{a}{b}$ | C£® | $\frac{y}{x}$=$\frac{b}{a}$ | D£® | ÒÔÉϾù²»ÕýÈ· |
Ôò¡÷OCDÓëËıßÐÎABDCµÄÃæ»ý±ÈΪ£¨¡¡¡¡£©
| A£® | 1£º2 | B£® | 1£º3 | C£® | 1£º4 | D£® | 1£º8 |
| A£® | B£® | C£® | D£® |
| A£® | SAS | B£® | SSS | C£® | ASA | D£® | AAS |
| A£® | £¨1£¬3£© | B£® | £¨3£¬1£© | C£® | £¨2£¬1£© | D£® | £¨3£¬2£© |