题目内容
2.分析 先连接A′D,过点F′,E′作F′G⊥A′D,E′H⊥A′D,由正六边形的性质得出A′的坐标,再根据每6个单位长度正好等于正六边形滚动一周即可得出结论.
解答
解:如图所示:
当滚动到A′D⊥x轴时,E、F、A的对应点分别是E′、F′、A′,连接A′D,点F′,E′作F′G⊥A′D,E′H⊥A′D,
∵六边形ABCDEF是正六边形,
∴∠A′F′G=30°,
∴A′G=$\frac{1}{2}$A′F′=$\frac{1}{2}$,同理可得HD=$\frac{1}{2}$,
∴A′D=2,
∵D(2,0)
∴A′(2,2),OD=2,
∵正六边形滚动6个单位长度时正好滚动一周,
∴从点(2,2)开始到点(50,2)正好滚动48个单位长度,
∵48÷6=8,
∴恰好滚动8周,
∴会过点(50,2)的是点A.
故答案为:A.
点评 本题考查的是正多边形和圆及图形旋转的性质,根据题意作出辅助线,利用正六边形的性质求出A′点的坐标是解答此题的关键.
练习册系列答案
相关题目
12.若一个数的绝对值等于2,另一个数是1,则这两个数的和是( )
| A. | 3 | B. | -1 | C. | 3或-1 | D. | ±3或±1 |