题目内容

如图,为测量一座山峰CF的高度,将此山的某侧山坡划分为AB和BC两段,每一段山坡近似是“直”的,测得坡长AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.

(1)求AB段山坡的高度EF;

(2)求山峰的高度CF(结果保留根式).

(1) 400米;(2) (100+400)米 【解析】(1)作BH⊥AF于H,如图,在Rt△ABF中根据正弦的定义可计算出BH的长,从而得到EF的长; (2)先在Rt△CBE中利用∠CBE的正弦计算出CE,然后计算CE和EF的和即可. 试题解析:(1)作BH⊥AF于H,如图, 在Rt△ABH中,∵sin∠BAH=, ∴BH=800•sin30°=400, ∴E...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网