ÌâÄ¿ÄÚÈÝ
ÔĶÁÏÂÁвÄÁÏ£º
ͨ¹ýСѧµÄѧϰÎÒÃÇÖªµÀ£¬·ÖÊý¿É·ÖΪ¡°Õæ·ÖÊý¡±ºÍ¡°¼Ù·ÖÊý¡±£®¶ø¼Ù·ÖÊý¶¼¿É»¯Îª´ø·ÖÊý£¬È磺
=
=2+
=2
£®ÎÒÃǶ¨Ò壺ÔÚ·ÖʽÖУ¬¶ÔÓÚÖ»º¬ÓÐÒ»¸ö×ÖĸµÄ·Öʽ£¬µ±·Ö×ӵĴÎÊý´óÓÚ»òµÈÓÚ·ÖĸµÄ´ÎÊýʱ£¬ÎÒÃdzÆÖ®Îª¡°¼Ù·Öʽ¡±£»µ±·Ö×ӵĴÎÊýСÓÚ·ÖĸµÄ´ÎÊýʱ£¬ÎÒÃdzÆÖ®Îª¡°Õæ·Öʽ¡±£®
È磺
£¬
ÕâÑùµÄ·Öʽ¾ÍÊǼٷÖʽ£»ÔÙÈ磺
£¬
ÕâÑùµÄ·Öʽ¾ÍÊÇÕæ·Öʽ£®ÀàËÆµÄ£¬¼Ù·ÖʽҲ¿ÉÒÔ»¯Îª´ø·Öʽ£¨¼´£ºÕûʽÓëÕæ·ÖʽµÄºÍµÄÐÎʽ£©£®
È磺
=
=1-
£»
ÔÙÈ磺
=
=
=x+1+
£®
½â¾öÏÂÁÐÎÊÌ⣺
£¨1£©·Öʽ
ÊÇ ·Öʽ£¨Ìî¡°Õæ·Öʽ¡±»ò¡°¼Ù·Öʽ¡±£©£»
£¨2£©¼Ù·Öʽ
¿É»¯Îª´ø·Öʽ µÄÐÎʽ£»
£¨3£©Èç¹û·Öʽ
µÄֵΪÕûÊý£¬ÄÇôxµÄÕûÊýֵΪ £®
ͨ¹ýСѧµÄѧϰÎÒÃÇÖªµÀ£¬·ÖÊý¿É·ÖΪ¡°Õæ·ÖÊý¡±ºÍ¡°¼Ù·ÖÊý¡±£®¶ø¼Ù·ÖÊý¶¼¿É»¯Îª´ø·ÖÊý£¬È磺
| 8 |
| 3 |
| 6+2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
È磺
| x-1 |
| x+1 |
| x2 |
| x-1 |
| 3 |
| x+1 |
| 2x |
| x2+1 |
È磺
| x-1 |
| x+1 |
| (x+1)-2 |
| x+1 |
| 2 |
| x+1 |
ÔÙÈ磺
| x2 |
| x-1 |
| x2-1+1 |
| x-1 |
| (x+1)(x-1)+1 |
| x-1 |
| 1 |
| x-1 |
½â¾öÏÂÁÐÎÊÌ⣺
£¨1£©·Öʽ
| 2 |
| x |
£¨2£©¼Ù·Öʽ
| x-1 |
| x+2 |
£¨3£©Èç¹û·Öʽ
| 2x-1 |
| x+1 |
¿¼µã£º·ÖʽµÄ»ìºÏÔËËã
רÌ⣺ÔĶÁÐÍ
·ÖÎö£º£¨1£©¸ù¾ÝÔĶÁ²ÄÁÏÖÐÕæ·ÖʽÓë¼Ù·ÖʽµÄ¶¨ÒåÅжϼ´¿É£»
£¨2£©Ôʽ±äÐΣ¬»¯Îª´ø·Öʽ¼´¿É£»
£¨3£©·Öʽ»¯Îª´ø·Öʽºó£¬¼´¿ÉÈ·¶¨³öxµÄÕûÊýÖµ£®
£¨2£©Ôʽ±äÐΣ¬»¯Îª´ø·Öʽ¼´¿É£»
£¨3£©·Öʽ»¯Îª´ø·Öʽºó£¬¼´¿ÉÈ·¶¨³öxµÄÕûÊýÖµ£®
½â´ð£º½â£º£¨1£©·Öʽ
ÊÇÕæ·Öʽ£»
£¨2£©
=
=1-
£»
£¨3£©
=
=2-
ΪÕûÊý£¬
ÔòxµÄ¿ÉÄÜÕûÊýֵΪ 0£¬-2£¬2£¬-4£®
¹Ê´ð°¸Îª£º£¨1£©Õ棻£¨2£©1-
£»£¨3£©0£¬-2£¬2£¬-4
| 2 |
| x |
£¨2£©
| x-1 |
| x+2 |
| x+2-3 |
| x+2 |
| 3 |
| x+2 |
£¨3£©
| 2x-1 |
| x+1 |
| 2(x+1)-3 |
| x+1 |
| 3 |
| x+1 |
ÔòxµÄ¿ÉÄÜÕûÊýֵΪ 0£¬-2£¬2£¬-4£®
¹Ê´ð°¸Îª£º£¨1£©Õ棻£¨2£©1-
| 3 |
| x+2 |
µãÆÀ£º´ËÌ⿼²éÁË·ÖʽµÄ»ìºÏÔËË㣬ÊìÁ·ÕÆÎÕÔËËã·¨ÔòÊǽⱾÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
Êý¾Ý6¡¢10¡¢4¡¢5¡¢4ÖУ¬ÖÐλÊýºÍÖÚÊý·Ö±ðÊÇ£¨¡¡¡¡£©
| A¡¢4£¬5 | B¡¢5£¬4 |
| C¡¢6£¬4 | D¡¢10£¬6 |