题目内容

17.如图,正方形ABCD内部有若干个点(任意三点都能构成一个三角形),用这些点以及正方形ABCD的顶点A,B,C,D把原正方形分割成一些三角形(互相不重叠):
(1)填写表:
正方形ABCD内点的个数1234n
分割成的三角形的个数468102n+2
(2)原正方形能否被分割成2012个三角形?若能,求此时正方形ABCD内部有多少个点?若不能,请说明理由.

分析 (1)有1个点时,内部分割成4个三角形;
有2个点时,内部分割成4+2=6个三角形;
那么有3个点时,内部分割成4+2×2=8个三角形;
有4个点时,内部分割成4+2×3=10个三角形;
有n个点时,内部分割成4+2×(n-1)=(2n+2)个三角形;
(2)让2n+2=2012,求出n的值.

解答 解:(1)填写下表:


(2)能.当2n+2=2012时,n=1005.
即正方形内部有1005个点.

点评 此题考查了图形的变化类问题,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的以及与第一个图形的相互联系,探寻其规律.本题需注意是得到被分割成的三角形的个数.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网