题目内容

如果满足|
(x2-3x+2)2
-5|
=a的实数x恰有6个值,那么a的取值范围是(  )
A、a≥-5
B、
19
4
<a<5
C、5<a<
21
4
D、0≤a≤5
考点:无理方程,绝对值,二次根式的应用,不等式的解集
专题:
分析:根据x的取值范围去来化简二次根式,然后根据绝对值的性质、二次函数的最值来求a的取值范围.
解答:解:
(x2-3x+2)2
=|(x-1)(x-2)|;
①当x-1>0,且x-2>0,即x>2时,
|
(x2-3x+2)2
-5|
=|x2-3x+2-5|=|(x-
3
2
2-
21
4
|,
当x=
3
2
时,|
(x2-3x+2)2
-5|
=a=
21
4

∴0≤a<
21
4

②当x-1>0,且x-2<0,即1<x<2时,
|
(x2-3x+2)2
-5|
=|-x2+3x-2-5|=|(x-
3
2
2+
19
4
|;
当x=
3
2
时,|
(x2-3x+2)2
-5|
=a=
19
4

∴a=|
(x2-3x+2)2
-5|
19
4

③当x-1<0,且x-2<0,即x<1时,
|
(x2-3x+2)2
-5|
=|x2-3x+2-5|=|(x-
3
2
2-
21
4
|,
当x=
3
2
时,|
(x2-3x+2)2
-5|
=a=
21
4

∴0≤a<
21
4

④当x-1=0或x-2=0,即x=1或x=2时,|
(x2-3x+2)2
-5|
=|-5|=5;
综上所述,a的取值范围是:0≤a≤5;
故选D.
点评:本题综合考查了二次根式的应用、无理方程的解法、绝对值以及不等式的解集.解答该题时,采用了分类讨论的解题方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网