题目内容

3.如图①,在△ABC中,AC=BC,点D为BC的中点,DE⊥AB,垂足为点E,过点B作BG∥AC交DE的延长线于点G.
(1)求证:DB=BG;
(2)当∠ACB=90°时,如图②,连接AD、CG,求证:AD⊥CG.

分析 (1)由条件证明△DBE≌△GBE即可;
(2)由条件可证明△ACD≌△CBG,再利用角的和差可证得结论.

解答 证明:
(1)∵AC=BC,
∴∠A=∠CBA,
∵AC∥BG,
∴∠A=∠GBA,即∠CBA=∠GBA,
∵DE⊥AB,
∴∠DEB=∠GEB,
在△DBE和△GBE中
$\left\{{\begin{array}{l}{∠CBA=∠GBA}\\{EB=EB}\\{∠DEB=GEB}\end{array}}\right.$
∴△DBE≌△GBE(ASA),
∴DB=BG;

(2)∵点D为BC的中点,
∴CD=DB,
∵DB=BG,
∴CD=BG,
∵AC∥BG,
∴∠ACB+∠GBC=180°,
∵∠ACB=90°,
∴∠GBC=∠ACB=90°,
在△ACD和△CBG中
$\left\{\begin{array}{l}{AC=BC}\\{∠ACB=∠GBC=90°}\\{CD=GB}\end{array}\right.$
∴△ACD≌△CBG(SAS),
∴∠CAD=∠BCG,
∵∠ACG+∠BCG=90°,
∴∠ACG+∠CAD=90°,
即 AD⊥CG.

点评 本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网