题目内容
17.解方程组(1)$\left\{\begin{array}{l}{x-y=3①}\\{3x-8y=14②}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{x+y=8①}\\{y+z=6②}\\{z+x=4③}\end{array}\right.$.
分析 (1)加减消元法求解可得;
(2)①+②+③后整理可得x+y+z=9,分别减去方程组中每个方程即可得.
解答 (1)解:①×3-②得:5y=-5,
∴y=-1.
将y=-1代入①得:x+1=3,
∴x=2,
∴原方程组的解为$\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$;
(2)①+②+③得:2(x+y+z)=18,
∴x+y+z=9 ④,
④-①得:z=1;
④-②得:x=3;
④-③得:y=5.
∴原方程组的解为$\left\{\begin{array}{l}{x=3}\\{y=5}\\{z=1}\end{array}\right.$.
点评 本题主要考查解二元一次方程组、三元一次方程组,熟练掌握加减消元法是解题关键.
练习册系列答案
相关题目
7.下列方程组中,有唯一解的是( )
| A. | $\left\{\begin{array}{l}{x+y=3}\\{2x+2y=1}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x+y=3}\\{2x+2y=6}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x+y=3}\\{2x-y=4}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x+y=3}\\{x+y=4}\end{array}\right.$ |