题目内容

如图的几何体是由一个正方体切去一个小正方体形成的,它的主视图是(  )

A. B. C. D.

D 【解析】试题分析:根据三视图的法则可知B为俯视图,D为主视图,主视图为一个正方形.
练习册系列答案
相关题目

如图,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分线.以O为圆心,OC为半径作⊙O.

(1)求证:AB是⊙O的切线.

(2)已知AO交⊙O于点E,延长AO交⊙O于点D,tanD=,求的值.

(3)在(2)的条件下,设⊙O的半径为3,求AB的长.

【答案】(1)证明见解析(2) (3)

【解析】试题分析:(1)过O作OF⊥AB于F,由角平分线上的点到角两边的距离相等即可得证;(2)连接CE,证明△ACE∽△ADC可得= tanD=;(3)先由勾股定理求得AE的长,再证明△B0F∽△BAC,得,设BO="y" ,BF=z,列二元一次方程组即可解决问题.

试题解析:(1)证明:作OF⊥AB于F

∵AO是∠BAC的角平分线,∠ACB=90º

∴OC=OF

∴AB是⊙O的切线

(2)连接CE

∵AO是∠BAC的角平分线,

∴∠CAE=∠CAD

∵∠ACE所对的弧与∠CDE所对的弧是同弧

∴∠ACE=∠CDE

∴△ACE∽△ADC

= tanD=

(3)先在△ACO中,设AE=x,

由勾股定理得

(x+3)²="(2x)" ²+3² ,解得x="2,"

∵∠BFO=90°=∠ACO

易证Rt△B0F∽Rt△BAC

设BO=y BF=z

即4z=9+3y,4y=12+3z

解得z=y=

∴AB=+4=

考点:圆的综合题.

【题型】解答题
【结束】
27

如图,⊙M与菱形ABCD在平面直角坐标系中,点M的坐标为(﹣3,1),点A的坐标为(2,0),点B的坐标为(1,﹣),点D在x轴上,且点D在点A的右侧.

(1)求菱形ABCD的周长;

(2)若⊙M沿x轴向右以每秒2个单位长度的速度平移,菱形ABCD沿x轴向左以每秒3个单位长度的速度平移,设菱形移动的时间为t(秒),当⊙M与AD相切,且切点为AD的中点时,连接AC,求t的值及∠MAC的度数;

(3)在(2)的条件下,当点M与AC所在的直线的距离为1时,求t的值.

(1)菱形的周长为8;(2)t=,∠MAC=105°;(3)当t=1﹣或t=1+时,圆M与AC相切. 【解析】试题分析:(1)过点B作BE⊥AD,垂足为E.由点A和点B的坐标可知:BE=,AE=1,依据勾股定理可求得AB的长,从而可求得菱形的周长;(2)记 M与x轴的切线为F,AD的中点为E.先求得EF的长,然后根据路程=时间×速度列出方程即可;平移的图形如图3所示:过点B作BE⊥AD,垂足...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网