ÌâÄ¿ÄÚÈÝ
9£®´Ó-3£¬-2£¬-1£¬1£¬2£¬3ÕâÁù¸öÊýÖУ¬Ëæ»úѡȡһ¸öÊý£¬¼ÇΪa£®ÈôÊýaʹ¹ØÓÚxµÄ²»µÈʽ×é$\left\{\begin{array}{l}{\frac{1}{2}£¨2x+1£©¡Ý3}\\{x-a£¼0}\end{array}\right.$Î޽⣬ÇÒʹ¹ØÓÚxµÄ·Öʽ·½³Ì$\frac{x}{x-1}$+$\frac{a+2}{1-x}$=3ÓÐÕûÊý½â£¬ÄÇôÕâÁù¸öÊýÖÐËùÓÐÂú×ãÌõ¼þµÄaµÄÖµÖ®ºÍÊÇ£¨¡¡¡¡£©| A£® | -3 | B£® | -2 | C£® | -1 | D£® | 0 |
·ÖÎö Óɲ»µÈʽ×éÎÞ½âÈ·¶¨³öaµÄ·¶Î§£¬´úÈë·Öʽ·½³ÌʹÆä½âΪÕûÊýÈ·¶¨³öaµÄÖµ£¬Çó³öÖ®ºÍ¼´¿É£®
½â´ð ½â£º²»µÈʽ×éÕûÀíµÃ£º$\left\{\begin{array}{l}{x¡Ý2.5}\\{x£¼a}\end{array}\right.$£¬
Óɲ»µÈʽ×éÎ޽⣬µÃµ½a¡Ü2.5£¬
¡àaµÄÖµ¿ÉÄÜΪ-3£¬-2£¬-1£¬1£¬2£¬
µ±a=-3ʱ£¬·Öʽ·½³ÌΪ$\frac{x}{x-1}$+$\frac{1}{x-1}$=3£¬
½âµÃ£ºx=2£¬
¾¼ìÑéx=2ÊÇ·Öʽ·½³ÌµÄ½â£»
µ±a=-2ʱ£¬·Öʽ·½³ÌΪ$\frac{x}{x-1}$=3£¬
½âµÃ£ºx=1.5£¬
¾¼ìÑéx=1.5ÊÇ·Öʽ·½³ÌµÄ½â£¬µ«²»ºÏÌâÒ⣻
µ±a=-1ʱ£¬·Öʽ·½³ÌΪ$\frac{x}{x-1}$-$\frac{1}{x-1}$=3£¬
½âµÃ£ºx=1£¬
¾¼ìÑéx=1ÊÇÔö¸ù£¬·Öʽ·½³ÌÎ޽⣻
µ±a=1ʱ£¬·Öʽ·½³ÌΪ$\frac{x}{x-1}$+$\frac{3}{1-x}$=3£¬
½âµÃ£ºx=0£¬
¾¼ìÑéx=0ÊÇ·Öʽ·½³ÌµÄ½â£»
µ±a=2ʱ£¬·Öʽ·½³ÌΪ$\frac{x}{x-1}$+$\frac{4}{1-x}$=3£¬
½âµÃ£ºx=-$\frac{1}{2}$£¬
¾¼ìÑéx=-$\frac{1}{2}$ÊÇ·Öʽ·½³ÌµÄ½â£¬µ«²»ºÏÌâÒ⣬
×ÛÉÏ£¬Âú×ãÌâÒâaµÄֵΪ-3£¬1£¬Ö®ºÍΪ-2£¬
¹ÊÑ¡B
µãÆÀ ´ËÌ⿼²éÁË·Öʽ·½³ÌµÄ½â£¬ÒÔ¼°½âÒ»ÔªÒ»´Î²»µÈʽ×飬ÊìÁ·ÕÆÎÕÔËËã·¨ÔòÊǽⱾÌâµÄ¹Ø¼ü£®
| A£® | -10 | B£® | 10 | C£® | -20 | D£® | 20 |
| A£® | -1 | B£® | 0 | C£® | 1 | D£® | 2 |
| A£® | ¢Ù¢Û | B£® | ¢Ù¢Ú | C£® | ¢Ù¢Ü | D£® | ¢Û¢Ü |