题目内容
10.咸阳市某奶粉企业,每天生产幼儿Ⅰ段和Ⅱ段奶粉共800罐,Ⅰ段和Ⅱ段的成本和利润如下表,设每天生产Ⅰ段奶粉x罐,每天获利y元.(1)请写出y关于x的函数关系式;
(2)如果该奶粉企业每天至少投入成本50000元,那么每天最多获利多少元.
| Ⅰ | Ⅱ | |
| 成本(元/瓶) | 60 | 70 |
| 利润(元/瓶) | 30 | 20 |
分析 (1)每天生产Ⅰ段奶粉x罐,则每天生产Ⅱ段奶粉(800-x)罐,根据:Ⅰ段奶粉利润+Ⅱ段奶粉利润=总利润,列出函数关系式即可;
(2)根据:Ⅰ段奶粉总成本+Ⅱ段奶粉总成本≥50000,求出x的取值范围,结合一次函数性质可得利润的最大值.
解答 解:(1)根据题意,得:y=30x+20(800-x)=10x+16000;
(2)由题意,知:60x+70(80-x)≥50000,
解得:x≤600,
由(1)y=10x+16000知,y随x的增大而增大,
则当x=600时,y取最大值,y最大值=10×600+16000=22000(元),
答:每天至多获利22000元.
点评 本题主要考查一次函数的实际应用能力,根据题意抓住相等关系列出函数关系式是解题的根本和关键,由不等关系求得x的取值范围是求最值的条件.
练习册系列答案
相关题目
20.
某青少年研究所随机调查了某校100名学生寒假中花费零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观.根据调查数据制成频数分布表和频数分布直方图.
(1)补全频数分布表和直方图;
(2)研究所认为,应对消费150元以上的学生提出勤俭节约的建议,试估计应对该校4000名学生中约多少名学生提出这项建议?
(1)补全频数分布表和直方图;
(2)研究所认为,应对消费150元以上的学生提出勤俭节约的建议,试估计应对该校4000名学生中约多少名学生提出这项建议?
| 分 组 | 频数 | 所占比例 |
| 0.5~50.5 | 10 | 0.1 |
| 50.5~100.5 | 20 | 0.2 |
| 100.5~150.5 | 35 | 35 |
| 150.5~200.5 | 30 | 0.3 |
| 200.5~250.5 | 10 | 0.1 |
| 250.5~300.5 | 5 | 0.05 |
| 合 计 | 100 | ------ |
1.
如图,在Rt△ABC中,∠C=90°,∠B=30°,以点C为圆心,4为半径的⊙C与AB相切于点D,交CA于E,交CB于F,则图中阴影部分的面积为( )
| A. | $\frac{32}{3}\sqrt{3}-4π$ | B. | $\frac{32}{3}\sqrt{3}-2π$ | C. | 16-4π | D. | 16-2π |
18.方程x2-5x=0的解是( )
| A. | x1=x2=5 | B. | x1=x2=0 | C. | x1=0,x2=5 | D. | x1=-5,x2=0 |