题目内容
3.分析 过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于N,则CE即为CM+MN的最小值,再根据三角形的面积公式求出CE的长,即为CM+MN的最小值.
解答 解:过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于N,
∵BD平分∠ABC,ME⊥AB于点E,MN⊥BC于N![]()
∴MN=ME,
∴CE=CM+ME=CM+MN的最小值.
∵三角形ABC的面积为18,AB=12,
∴$\frac{1}{2}$×12•CE=18,
∴CE=3.
即CM+MN的最小值为3.
故答案为:3.
点评 本题考查了轴对称-最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目.
练习册系列答案
相关题目
13.在直角坐标系中,O为坐标原点,已知A(2,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的个数共有( )
| A. | 4个 | B. | 3个 | C. | 2个 | D. | 1个 |