题目内容

20.如图,在△ABC中,AB=AC,D在边BC上,以A为圆心,AD长为半径画圆弧,交边BC的另一点E,交边AC于F,连接AE,EF.
(1)求证:△ABD≌△ACE;
(2)若∠ADB=3∠CEF,请判断EF与AB有怎样的位置关系?并说明理由.

分析 (1)根据全等三角形的判定定理得到△ABD≌△ACD;
(2)根据已知条件得到∠AEF=2CEF,根据等腰三角形的性质得到∠AFE=∠AEF=2∠CEF,等量代换得到∠CEF=∠C,根据全等三角形的性质得到∠B=∠C,于是得到结论;

解答 证明:(1)由题意可知AD=AE=AF,
∴∠ADE=∠AED,
∴∠ADB=∠AEC,
∵AB=AC,
∴∠B=∠C,
在△ABD和△ACD中,$\left\{\begin{array}{l}{∠ADB=∠AEC}\\{∠B=∠C}\\{AB=AC}\end{array}\right.$,
∴△ABD≌△ACD;
(2)∵∠ADB=∠AEC,∠ADB=3∠CEF,
∴∠AEF=2∠CEF,
∵AE=AF,
∴∠AFE=∠AEF=2∠CEF,
∴∠CEF=∠C,
∵△ABD≌△ACD,
∴∠B=∠C,
∴∠CEF=∠B,
∴EF∥AB.

点评 本题考查了直线与圆的位置关系,全等三角形的判断和性质,平行线的判定,熟练掌握全等三角形的判断和性质是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网