题目内容
【题目】如图,AB是⊙O切线,切点为A,OB与⊙O交于E,C、D是圆上的两点,且CA平分∠DCE,若AB=
,∠B=30°,则DE的长是_____.
![]()
【答案】![]()
【解析】
连接OA,交DE于点F,如图,根据切线的性质和解直角三角形的知识可求出圆的半径,根据角平分线的定义和垂径定理的推论可得OA⊥DE,进而可得DE∥AB,DE=2EF,然后解直角△OEF即可求出EF的长,从而可得答案.
解:连接OA,交DE于点F,如图,
∵AB是⊙O切线,
∴∠BAO=90°,
∵∠B=30°,AB=
,
∴AO=OE=
AB=
×
=2,
∵CA平分∠DCE,
∴∠DCA=∠ECA,
∴
,
∴OA⊥DE,
![]()
∴DE∥AB,DE=2EF,
∴∠OEF=∠B=30°,
∴EF=
,
∴DE=
,
故答案为:
.
【题目】随着国内疫情基本得到控制,旅游业也慢慢复苏,经市场调研发现旅游景点未来
天内,旅游人数
与时间
的关系如下表;每张门票
与时间
之间存在如下图所示的一次函数关系.(
,且
为整数)
时间 |
|
|
|
|
|
人数 |
|
|
|
|
|
<>
请结合上述信息解决下列问题:
(1)直接写出:
关于
的函数关系式是 .
与时间
函数关系式是 .
(2)请预测未来
天中哪一天的门票收入最多,最多是多少?
(3)为支援武汉抗疫,该旅游景点决定从每天获得的门票收入中拿出
元捐赠给武汉红十字会,求捐款后共有几天每天剩余门票收入不低于
元?
【题目】参照学习函数的过程方法,探究函数
的图像与性质,因为
,即
,所以我们对比函数
来探究列表:
| … | -4 | -3 | -2 | -1 |
|
| 1 | 2 | 3 | 4 | … | |
| … |
|
| 1 | 2 | 4 | -4 | -2 | -1 | <> |
| … | |
| … |
|
| 2 | 3 | 5 | -3 | -2 | 0 |
|
| … |
描点:在平面直角坐标系中以自变量
的取值为横坐标,以
相应的函数值为纵坐标,描出相应的点如图所示:
![]()
(1)请把
轴左边各点和右边各点分别用一条光滑曲线,顺次连接起来;
(2)观察图象并分析表格,回答下列问题:
①当
时,
随
的增大而______;(“增大”或“减小”)
②
的图象是由
的图象向______平移______个单位而得到的;
③图象关于点______中心对称.(填点的坐标)
(3)函数
与直线
交于点
,
,求
的面积.
【题目】某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如下两幅不完整的统计图表,请根据图表信息回答下列问题:
![]()
类别 | 项 目 | 人数 |
A | 跳绳 | 59 |
B | 健身操 | ▲ |
C | 俯卧撑 | 31 |
D | 开合跳 | ▲ |
E | 其它 | 22 |
![]()
(1)求参与问卷调查的学生总人数.
(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?
(3)该市共有初中学生约8000人,估算该市初中学生中最喜爱“健身操”的人数.