题目内容

10.如图,正方形ABCD的边长为2,以BC为边向正方形内作等边△BCE,连接AE、DE.
(1)请直接写出∠AEB的度数,∠AEB=75°;
(2)将△AED沿直线AD向上翻折,得△AFD.求证:四边形AEDF是菱形;
(3)连接EF,交AD于点 O,试求EF的长?

分析 (1)由正方形和等边三角形的性质得出∠ABE=30°,AB=BE,由等腰三角形的性质和三角形内角和定理即可求出∠AEB的度数;
(2)先判断出△ABE≌△DCE,得到AE=ED,再由翻折的性质即可得出结论;
(3)先由等边三角形的性质求出EH,进而得出OE,借助(2)的结论即可求出EF.

解答 解:(1)∵四边形ABCD是正方形,
∴∠ABC=∠BCD=90°,AB=BC=CD,
∵△EBC是等边三角形,
∴BE=BC,∠EBC=60°,
∴∠ABE=90°-60°=30°,AB=BE,
∴∠AEB=∠BAE=$\frac{1}{2}$(180°-30°)=75°;
故答案为75°;
(2)∵四边形ABCD为正方形,
∴∠ABC=∠BCD=90°,AB=CD,
∵△BCE为等边三角形,
∴∠BCE=∠EBC=60°,BE=EC,
∴∠ABE=∠DCE=90°-60°=30°,
∴△ABE≌△DCE,
∴AE=ED,
∵△AED沿着AD翻折为△AFD,
∴AE=ED=AF=FD,
∴四边形AEDF是菱形;
(3)如图,

由翻折知,AE=AF,∠FAO=∠EAO,
∴EF⊥AD,过点E作EH⊥BC于H,
在等边三角形BCE中,BC=2,
∴EH=$\frac{\sqrt{3}}{2}$BC=$\sqrt{3}$,
∴EO=OH-EH=AB-EH=2-$\sqrt{3}$,
∴EF=2EO=2(2-$\sqrt{3}$)=4-2$\sqrt{3}$.

点评 此题是四边形综合题,主要考查了等边三角形的性质,全等三角形的判定和性质,翻折性质,菱形的判定和性质,解(2)的关键是判断出AE=ED,解(3)的关键是作出辅助线求出EH.是一道中等难度的中考常考题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网