题目内容

20.如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°,得到△ADE,连接BD和CE,BD与CE交于点F.
(1)∠AEC的度数;
(2)求证:四边形ABFE是菱形.

分析 (1)根据旋转可得∠CAE=100°,AC=AE,再根据三角形内角和定理可得∠AEC的度数;
(2)首先证明∠BAE=∠BFE,∠ABD=∠ADB=∠ACE=∠AEC,再根据对角相等的四边形是平行四边形,可证得四边形ABFE是平行四边形,然后再根据旋转可得AE=AB,依据邻边相等的平行四边形是菱形,即可证得.

解答 (1)解:根据旋转可得∠CAE=100°,AC=AE,
∵∠AEC+∠ACE+∠CAE=180°,
∴∠AEC=$\frac{1}{2}$(180°-100°)=40°;

(2)证明:证明:∵∠BAD=∠CAE=100°,AB=AC=AD=AE,
∴∠ABD=∠ADB=∠ACE=∠AEC=40°.
∵∠BAE=∠BAD+∠DAE=140°,
∴∠BFE=360°-∠BAE-∠ABD-∠AEC=140°,
∴∠BAE=∠BFE,
∴四边形ABFE是平行四边形,
∵AB=AE,
∴平行四边形ABFE是菱形.

点评 此题考查了等腰三角形的性质、旋转的性质以及菱形的判定,熟练掌握菱形的判定定理是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网