题目内容
18.分析 根据等边对等角的性质可得∠E=∠CAE,然后根据正方形的对角线平分一组对角以及三角形的一个外角等于与它不相邻的两个内角的和列式求出∠E=22.5°,再根据 三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
解答 解:∵CE=AC,
∴∠E=∠CAE,
∵AC是正方形ABCD的对角线,
∴∠ACB=45°,
∴∠E+∠CAE=45°,
∴∠E=$\frac{1}{2}$×45°=22.5°,
在△CEF中,∠AFC=∠E+∠ECF=22.5°+90°=112.5°.
故答案为:112.5°.
点评 本题考查了正方形的性质,等腰三角形的性质,主要利用了正方形的对角线平分一组对角,等边对等角,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.
练习册系列答案
相关题目
6.菲尔兹奖是国际上有崇高声誉的一个数学奖项,下面的数据是从1936年至2014年菲尔兹奖得主获奖时的年龄(岁):
29 39 35 33 39 27 33 35 31 31 37 32 38 36
31 39 32 38 37 34 29 34 38 32 35 36 33 32
29 35 36 37 39 38 40 38 37 39 38 34 33 40
36 36 37 40 31 38 38 40 40 37 35 40 39 37
请根据上述数据,解答下列问题:
小彬按“组距为5”列出了如图的频数分布表
(1)每组数据含最小值不含最大值,请将表中空缺的部分补充完整,并补全频数分布直方图;
(2)根据(1)中的频数分布直方图描述这56位菲尔兹奖得主获奖时的年龄的分布特征;
(3)在(1)的基础上,小彬又画了如图所示的扇形统计图,图中获奖年龄在30~35岁的人数约占获奖总人数的26.8%(百分号前保留1位小数);C组所在扇形对应的圆心角度数约为199°(保留整数)
29 39 35 33 39 27 33 35 31 31 37 32 38 36
31 39 32 38 37 34 29 34 38 32 35 36 33 32
29 35 36 37 39 38 40 38 37 39 38 34 33 40
36 36 37 40 31 38 38 40 40 37 35 40 39 37
小彬按“组距为5”列出了如图的频数分布表
| 分组 | 频数 |
| A:25~30 | 4 |
| B:30~35 | 15 |
| C:35~40 | 31 |
| D:40~45 | 6 |
| 合计 | 56 |
(2)根据(1)中的频数分布直方图描述这56位菲尔兹奖得主获奖时的年龄的分布特征;
(3)在(1)的基础上,小彬又画了如图所示的扇形统计图,图中获奖年龄在30~35岁的人数约占获奖总人数的26.8%(百分号前保留1位小数);C组所在扇形对应的圆心角度数约为199°(保留整数)
13.在菱形ABCD中,AC,BD为对角线,下列说法一定正确的是( )
| A. | AC=BD | B. | AC⊥BD | C. | ∠ABD=∠BAC | D. | ∠BAC+∠CAD=90° |