题目内容
18.分析 先利用矩形的性质得CD=AB=8,BC=AD=10,∠B=∠D=∠C=90°,则根据折叠的性质得AF=AD=10,EF=DE,再利用勾股定理计算出BF=6,则CF=BC-BF=4,设CE=x,DE=EF=8-x,然后利用勾股定理得到42+x2=(8-x)2,再解方程求出x即可.
解答 解:∵四边形ABCD为矩形,
∴CD=AB=8,BC=AD=10,∠B=∠D=∠C=90°,
∵△ADE沿直线AE折叠,点D刚好落在BC边上的点F处,
∴AF=AD=10,EF=DE,
在Rt△ABF中,BF=$\sqrt{A{F}^{2}-A{B}^{2}}$=$\sqrt{1{0}^{2}-{8}^{2}}$=6,
∴CF=BC-BF=10-6=4,
设CE=x,DE=EF=8-x,
在Rt△CEF中,∵CF2+CE2=EF2,
∴42+x2=(8-x)2,解得x=3,
即CE的长为3.
故答案为3.
点评 本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决本题的关键是求出CF和用CE表示EF.
练习册系列答案
相关题目
7.二元一次方程组$\left\{\begin{array}{l}{2x-y=5}\\{3x+4y=2}\end{array}\right.$的解是( )
| A. | $\left\{\begin{array}{l}{x=-1}\\{y=2}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$ |