题目内容

7.如果实数x、y满足方程组$\left\{\begin{array}{l}{x+3y=0}\\{2x+3y=3}\end{array}\right.$,求代数式($\frac{xy}{x+y}$+2)÷$\frac{1}{x+y}$.

分析 原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,求出方程组的解得到x与y的值,代入计算即可求出值.

解答 解:原式=$\frac{xy}{x+y}$•(x+y)+2•(x+y)=xy+2x+2y,
方程组$\left\{\begin{array}{l}{x+3y=0}\\{2x+3y=3}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{x=3}\\{y=-1}\end{array}\right.$,
当x=3,y=-1时,原式=-3+6-2=1.

点评 此题考查了分式的化简求值,解二元一次方程组,掌握分式的化简方法与解方程组的方法是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网