ÌâÄ¿ÄÚÈÝ
13£®¶¯³µµÄ¿ªÍ¨ÎªÑïÖÝÊÐÃñµÄ³öÐдøÀ´ÁË·½±ã£®´ÓÑïÖݵ½ºÏ·Ê£¬Â·³ÌΪ360ǧÃ×£¬Ä³Ì˶¯³µµÄƽ¾ùËÙ¶È±ÈÆÕͨÁгµ¿ì50%£¬ËùÐèʱ¼ä±ÈÆÕͨÁгµÉÙ1Сʱ£®Çó¸Ã¶¯³µµÄƽ¾ùËÙ¶È£®£¨1£©¢Ù¼×ͬѧÉèÆÕͨÁгµµÄËÙ¶ÈΪx£¬ÁгöÉв»ÍêÕûµÄ·½³Ì£º$\frac{360}{x}=\frac{360}{1.5x}+$1
¢ÚÒÒͬѧÉ趯³µËù»¨µÄʱ¼ä Ϊy£¬ÁгöÉв»ÍêÕûµÄ·½³Ì£º$\frac{360}{y}$=$\frac{1.5¡Á360}{£¨£©}$
£¨2£©ÇëÑ¡ÔñÆäÖÐÒ»ÃûͬѧµÄÉè·¨£¬Ð´³öÍêÕûµÄ½â´ð¹ý³Ì£®
·ÖÎö ÉèÆÕͨÁгµµÄËÙ¶ÈΪΪxkm/h£¬¶¯³µµÄƽ¾ùËÙ¶ÈΪ1.5xkm/h£¬¸ù¾Ý×ß¹ýÏàͬµÄ·³Ì360km£¬×ø¶¯³µËùÓõÄʱ¼ä±È×øÆÕͨÁгµËùÓõÄʱ¼äÉÙ1Сʱ£¬Áз½³ÌÇó½â£®
½â´ð ½â£º¢Ù¼×ͬѧÉèÆÕͨÁгµµÄËÙ¶ÈΪx£¬ÁгöÉв»ÍêÕûµÄ·½³Ì£º$\frac{360}{x}=\frac{360}{1.5x}+$ 1
¢ÚÒÒͬѧÉè ¶¯³µËù»¨µÄʱ¼äΪy£¬ÁгöÉв»ÍêÕûµÄ·½³Ì£º$\frac{360}{y}=\frac{1.5¡Á360}{y+1}$
¹Ê´ð°¸Îª£ºÆÕͨÁгµµÄËÙ¶È£¬1£»¶¯³µËù»¨µÄʱ¼ä£¬y+1£»
£¨2£©ÉèÆÕͨÁгµµÄËÙ¶ÈΪΪxkm/h£¬¶¯³µµÄƽ¾ùËÙ¶ÈΪ1.5xkm/h£¬
ÓÉÌâÒâµÃ£¬$\frac{360}{x}$-$\frac{360}{1.5x}$=1£¬
½âµÃ£ºx=120£¬
¾¼ìÑ飬x=120ÊÇÔ·Öʽ·½³ÌµÄ½â£¬ÇÒ·ûºÏÌâÒ⣮
¶¯³µµÄƽ¾ùËÙ¶È=120¡Á1.5=180km/h£®
´ð£º¸ÃÌ˶¯³µµÄƽ¾ùËÙ¶ÈΪ180km/h£®
µãÆÀ ±¾Ì⿼²éÁË·Öʽ·½³ÌµÄÓ¦Ó㬽â´ð±¾ÌâµÄ¹Ø¼üÊǶÁ¶®ÌâÒ⣬Éè³öδ֪Êý£¬ÕÒ³öºÏÊʵĵÈÁ¿¹ØÏµ£¬Áз½³ÌÇó½â£¬×¢Òâ¼ìÑ飮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
1£®ÔÚµÈÑü¡÷ABCÖУ¬AB=5cm£¬BC=7cm£®ÔòµÈÑü¡÷ABCµÄÖܳ¤Îª£¨¡¡¡¡£©
| A£® | 12cm | B£® | 17cm | C£® | 19cm | D£® | 17cm»ò19cm |
18£®
Èçͼ£¬ÔÚÁâÐÎABCDÖУ¬¶Ô½ÇÏßAC¡¢BD½»ÓÚµãO£¬EΪADµÄÖе㣬ÁâÐÎABCDµÄÖܳ¤Îª32£¬ÔòOEµÄ³¤µÈÓÚ£¨¡¡¡¡£©
| A£® | 2 | B£® | 4 | C£® | 8 | D£® | 16 |
5£®Ä³Ñ§Ð£¼Æ»®×éÖ¯500È˲μÓÉç»áʵ¼ù»î¶¯£¬Óëij¹«½»¹«Ë¾½ÓÇ¢ºó£¬µÃÖª¸Ã¹«Ë¾ÓÐA£¬BÐÍÁ½Öֿͳµ£¬ËüÃǵÄÔØ¿ÍÁ¿ºÍ×â½ðÈç±íËùʾ£º
¾²âË㣬×âÓÃA£¬BÐͿͳµ¹²13Á¾½ÏΪºÏÀí£¬Éè×âÓÃAÐͿͳµxÁ¾£¬¸ù¾ÝÒªÇ󻨴ðÏÂÁÐÎÊÌ⣺
£¨1£©Óú¬xµÄ´úÊýʽÌîдÏÂ±í£º
£¨2£©²ÉÓÃÔõÑùµÄ×â³µ·½°¸¿ÉÒÔʹ×ܵÄ×â³µ·ÑÓÃ×îµÍ£¬×îµÍΪ¶àÉÙ£¿
| AÐͿͳµ | BÐͿͳµ | |
| ÔØ¿ÍÁ¿£¨ÈË/Á¾£© | 45 | 28 |
| ×â½ð£¨Ôª/Á¾£© | 400 | 250 |
£¨1£©Óú¬xµÄ´úÊýʽÌîдÏÂ±í£º
| ³µÁ¾Êý£¨Á¾£© | ÔØ¿ÍÁ¿£¨ÈË£© | ×â½ð£¨Ôª£© | |
| AÐͿͳµ | x | 45x | 400x |
| BÐͿͳµ | 13-x | 28£¨13-x£© | 250£¨13-x£© |
3£®Ö±½ÇÈý½ÇÐεÄÒ»ÌõÖ±½Ç±ß³¤Îª$\sqrt{2}$cm£¬Ð±±ß³¤Îª$\sqrt{10}$cm£¬Ôò´ËÈý½ÇÐεÄÃæ»ýΪ£¨¡¡¡¡£©
| A£® | 2 | B£® | 2$\sqrt{2}$ | C£® | 2$\sqrt{3}$ | D£® | 4 |