题目内容

如图,在△ABC中,∠A=α,∠ABC的平分线与△ABC的外角∠ACD的平分线交于点A1,得∠A1=
 
;∠A1BC的平分线与∠A1CD的平分线交于点A2,得∠A2;…;∠A2010BC的平分线与∠A2010CD的平分线交于点A2011,得∠A2011,则∠A2011=
 
考点:三角形内角和定理,三角形的外角性质
专题:规律型
分析:根据角平分线的定义可得∠A1BC=
1
2
∠ABC,∠A1CD=
1
2
∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可求出∠A1的度数,同理求出∠A2,可以发现后一个角等于前一个角的
1
2
,根据此规律即可得解.
解答:解:∵A1B是∠ABC的平分线,A1C是∠ACD的平分线,
∴∠A1BC=
1
2
∠ABC,∠A1CD=
1
2
∠ACD,
又∵∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1
1
2
(∠A+∠ABC)=
1
2
∠ABC+∠A1
∴∠A1=
1
2
∠A,
∵∠A=α,
∴∠A1=
α
2

同理可得∠A2=
1
2
∠A1=
1
2
1
2
α=
α
22

∴∠An=
α
2n

∴∠A2011=
α
22011

故答案为:
α
2
α
22011
点评:本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网