题目内容

8.如图,△ABC中,∠B=40°,∠C=62°,AD⊥BC于点D,AE平分∠BAC,则∠DAE的度数是11°.

分析 根据三角形的内角和定理,可求得∠BAC的度数,由AE是∠BAC的平分线,可得∠EAC的度数;在直角△ADC中,可求出∠DAC的度数,所以∠DAE=∠EAC-∠DAC,即可得出.

解答 解:∵△ABC中,∠B=40°,∠C=62°,
∴∠BAC=180°-∠B-∠C
=180°-40°-62°
=78°,
∵AE是∠BAC的平分线,
∴∠EAC=$\frac{1}{2}$∠BAC=39°,
∵AD是BC边上的高,
∴在直角△ADC中,
∠DAC=90°-∠C=90°-62°=28°,
∴∠DAE=∠EAC-∠DAC=39°-28°=11°,
故答案为:11°

点评 本题主要考查了三角形的内角和定理和三角形的高、角平分线的性质,学生应熟练掌握三角形的高、中线和角平分线这些基本知识,能灵活运用解决问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网