题目内容
16.用适当的方法解下列方程(1)2x2+x-1=0
(2)用配方法解方程:x2-4x+1=0.
分析 (1)利用因式分解法解方程;
(2)先利用配方法得到(x-2)2=3,然后利用直接开平方法解方程.
解答 解:(1)(x+1)(2x-1)=0,
x+1=0或2x-1=0,
所以x1=-1,x2=$\frac{1}{2}$;
(2)x2-4x+4=3,
(x-2)2=3,
x-2=±$\sqrt{3}$,
所以x1=2+$\sqrt{3}$,x2=2-$\sqrt{3}$.
点评 本题考查了解一元二次方程-因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法解一元二次方程.
练习册系列答案
相关题目
8.小王沿坡度为i=1:0.75的斜坡向上走了20m时升高了h m,则h的值为( )
| A. | 10 | B. | 12 | C. | 15 | D. | 16 |
5.若a>b,则下列结论正确的是( )
| A. | a2>b2 | B. | a2<b2 | ||
| C. | a2≥b2 | D. | a2与b2的大小关系不能确定 |