题目内容

14.如图,在锐角三角形ABC中,∠BAC=60°,BN,CM为高,P是BC的中点,连接MN,MP,NP,则以下结论:①NP=MP;②当∠ABC=60°时,MN∥BC;③BN=2AN;④当∠ABC=45°时,BN=$\sqrt{2}$PC,其中正确的有(  )
A.1个B.2个C.3个D.4个

分析 ①由BN、CM为高,P为BC的中点,根据直角三角形斜边上的中线等于斜边的一半,即可证得NP=MP;
②由BN、CM为高与∠A是公共角,易证得△AMN∽△ABC,然后由∠BAC=60°与∠ABC=60°,可得△ABC是等边三角形,则易得∠AMN=∠ABC=60°,即可得MN∥BC;
③根据锐角三角函数的定义,可得③错误;
④由已知条件得到△BCM是等腰直角三角形,得到BM=CM=$\frac{\sqrt{2}}{2}$BC,推出BM=CM=$\sqrt{2}$PC,由于BN≠CM,故④错误.

解答 解:①∵BN、CM为高,
∴∠BMC=∠BNC=90°,
∵P为BC的中点,
∴NP=MP,故①正确;

②∵BN、CM为高,
∴∠BNA=∠CMA=90°,
∵∠A=∠A,
∴△BNA∽△CMA,
∵∠BAC=60°,∠ABC=60°,
∴△ABC是等边三角形,
∴△AMN也是等边三角形,
∴∠AMN=∠ABC=60°,
∴MN∥BC,故②正确;

③∵∠ABC=60°,
tan60°=$\frac{BN}{AN}$=2,与$\sqrt{3}$矛盾,故③错误;

④∵∠ABC=45°,
∴△BCM是等腰直角三角形,
∴BM=CM=$\frac{\sqrt{2}}{2}$BC,
∵BC=2CP,
∴BM=CM=$\sqrt{2}$PC,
∵BN≠CM,
∴BN≠$\sqrt{2}$PC,故④错误;
故选B.

点评 此题考查了直角三角形的性质,等边三角形的判定与性质以及相似三角形的判定与性质等知识.此题综合性较强,难度适中,解题的关键是注意数形结合思想的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网