题目内容

如图,过边长为3的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连接PQ交边AC于点D,则DE的长为( )

A. B. C. D.不能确定

B

【解析】

试题分析:过P作PF∥BC交AC于F,得出等边三角形APF,推出AP=PF=QC,根据等腰三角形性质求出EF=AE,证△PFD≌△QCD,推出FD=CD,推出DE=AC即可.

【解析】
过P作PF∥BC交AC于F,

∵PF∥BC,△ABC是等边三角形,

∴∠PFD=∠QCD,∠APF=∠B=60°,∠AFP=∠ACB=60°,∠A=60°,

∴△APF是等边三角形,

∴AP=PF=AF,

∵PE⊥AC,

∴AE=EF,

∵AP=PF,AP=CQ,

∴PF=CQ,

在△PFD和△QCD中

∴△PFD≌△QCD,

∴FD=CD,

∵AE=EF,

∴EF+FD=AE+CD,

∴AE+CD=DE=AC,

∵AC=3,

∴DE=

故选B.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网