如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的正弦值为

【解析】 试题分析:本题首先将∠ABC转化到某一个直角三角形中,然后进行求值.

如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B。下列结论中不一定成立的是( )

A、PA=PB B、PO平分∠AOB

C、OA=OB D、AB垂直平分OP

D 【解析】 试题分析:本题要从已知条件OP平分∠AOB入手,利用角平分线的性质:因OP平分∠AOB,PA⊥OA,PB⊥OB,得到PA=PB,进而推出△AOE≌△BOE,从未得到∠APO=∠BPO,OA=OB,因此A、B、C项正确;设PO与AB相交于E,由OA=OB,∠AOP=∠BOP,OE=OE,得证△AOE≌△BOE,进而得∠AEO=∠BEO=90°,因此得证OP垂直AB,而不能得...

如图,已知正方形ABCD的边长为2,如果将线段BD绕着点B旋转后,点D落在CB的延长线上的点处,那么tan∠BAD′等于( )

A. 1 B. C. D.

B 【解析】试题解析:正方形ABCD的边长为2,则对角线BD=. ∴BD′=BD=. ∴tan∠BAD’=. 故选B.

如图,在△ABC中,AB=AC,CD平分∠ACB,∠A=36°,则∠BDC的度数为 .

72 【解析】由AB=AC,CD平分∠ACB,∠A=36°,根据三角形内角和180°可求得∠B等于∠ACB,并能求出其角度,在△DBC求得所求角度. 【解析】 ∵AB=AC,CD平分∠ACB,∠A=36°, ∴∠B=(180°-36°)÷2=72°,∠DCB=36°. ∴∠BDC=72°. 故答案为:72°

如图所示,F、C在线段BE上,且∠1=∠2,BC=EF.若要根据“SAS”使△ABC≌△DEF,还需要补充的条件是________.

AC=DF 【解析】已知∠1=∠2,BC=EF,根据“SAS”使△ABC≌△DEF,还需要补充的条件是AC=DF.

如图,在△ABC中,∠A=30°,∠B=45°,AC=2,则AB的长为_______.

3+ 【解析】过C作CD⊥AB于D,∴∠ADC=∠BDC=90°.∵∠B=45°,∴∠BCD=∠B=45°, ∴CD=BD.∵∠A=30°,,∴,∴. 由勾股定理得: ,∴.

(3分)必然事件的概率是( )

A.﹣1 B.0 C.0.5 D.1

D. 【解析】 试题分析:∵必然事件就是一定发生的事件,∴必然事件发生的概率是1.故选D.

如图所示,在△ABC中,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则下列三个结论:①AS=AR;②QP∥AR;③△BPR≌△QPS中(  )

A. 全部正确 B. 仅①和②正确 C. 仅①正确 D. 仅①和③正确

B 【解析】∵PR=PS,PR⊥AB于R,PS⊥AC于S, ∴∠PAB=∠PAC,∠PSA=∠PRA=90°, 在△PAR和△PAS中, , ∴△PAR≌△PAS(AAS), ∴AR=AS,∴①正确; ∵AQ=PQ, ∠CAP=∠APQ, ∵∠CAP=∠BAP, ∴∠BAP=∠APQ, ∴PQ∥AB,∴②正确; ∵PR⊥AB,...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网