题目内容
已知an+1=| 1 | ||
1+
|
分析:先根据a1=1及an+1=
求出a1、a2、a3的值,找出规律,再代入所求代数式进行计算即可.
| 1 | ||
1+
|
解答:解:∵an+1=
,
∴当a1=1,a2=
=
,a3=
=
,…a2003=
,
∴a1a2+a2a3+a3a4+…+a2002a2003
=
+
+
+…+
=(1-
)+(
-
)+…+(
-
)
=1-
=
.
故答案为:
.
| 1 | ||
1+
|
∴当a1=1,a2=
| 1 |
| 1+1 |
| 1 |
| 2 |
| 1 |
| 1+2 |
| 1 |
| 3 |
| 1 |
| 2003 |
∴a1a2+a2a3+a3a4+…+a2002a2003
=
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2002×2003 |
=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2002 |
| 1 |
| 2003 |
=1-
| 1 |
| 2003 |
=
| 2002 |
| 2003 |
故答案为:
| 2002 |
| 2003 |
点评:本题考查的是有理数的混合运算,根据题意得出a1、a2、a3的值,找出规律,是解答此题的关键.
练习册系列答案
相关题目