题目内容
已知,a1=
+
=
,a2=
+
=
,a3=
+
=
,…依据上述规律,猜想an=
,并简要证明你的猜想.
| 1 |
| 1×2×3 |
| 1 |
| 2 |
| 2 |
| 3 |
| 1 |
| 2×3×4 |
| 1 |
| 3 |
| 3 |
| 8 |
| 1 |
| 3×4×5 |
| 1 |
| 4 |
| 4 |
| 15 |
| n+1 |
| (n+1)2-1 |
| n+1 |
| (n+1)2-1 |
分析:根据上述规律猜想:an=
,理由为:由各项的第一个加数总结规律为:
,第二个加数总结规律为
,通分并利用同分母分式的加法法则计算,约分后将分母变形即可得证.
| n+1 |
| (n+1)2-1 |
| 1 |
| n(n+1)(n+2) |
| 1 |
| n+1 |
解答:解:猜想:an=
,理由为:
证明:由题意:
+
=
=
=
=
.
| n+1 |
| (n+1)2-1 |
证明:由题意:
| 1 |
| n(n+1)(n+2) |
| 1 |
| n+1 |
| 1+n(n+2) |
| n(n+1)(n+2) |
| (n+1)2 |
| n(n+1)(n+2) |
=
| n+1 |
| n(n+2) |
| n+1 |
| (n+1)2-1 |
点评:此题考查了分式的混合运算,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时分式的分子分母出现多项式,应将多项式分解因式后再约分.
练习册系列答案
相关题目