题目内容
16.分析 由在△ABC中,∠C=90°,四边形EDFC为内接正方形,易得△ADE∽△ABC,然后由相似三角形的对应边成比例,求得答案.
解答 解:∵四边形EDFC为内接正方形,
∴DE=DF,DE∥FC,
∴△ADE∽△ABC,
∴AE:AC=DE:BC,
∴AE:AC=DF:BC,
∴AE:DF=AC:BC=5:3.
故答案为:5:3.
点评 此题考查了相似三角形的判定与性质以及正方形的性质.注意证得△ADE∽△ABC是关键.
练习册系列答案
相关题目
6.下列逆命题是真命题的是( )
| A. | 对顶角相等 | |
| B. | 同角的余角相等 | |
| C. | 全等三角形的对应角相等 | |
| D. | 线段垂直平分线上的点到线段两端的距离相等 |
1.如果一元二次方程x2=c有实数根,那么常数c不可能是( )
| A. | 2 | B. | -2 | C. | 0 | D. | $\sqrt{2}$ |