题目内容

2.看图填空,并在括号内说明理由:
∵BD平分∠ABC(已知) 
∴∠1=∠2(角平分线定义)
又∠1=∠D(已知)
∴∠2=∠D(等量代换)
∴AB∥CD(内错角相等两直线平行)
∴∠ABC+∠BCD=180°(两直线平行同旁内角互补)
又∠ABC=55°(已知)
∴∠BCD=125°.

分析 由BD为角平分线,利用角平分线定义得到一对角相等,再由已知角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行得到AB与CD平行,利用两直线平行同旁内角互补即可求出所求角的度数.

解答 解:∵BD平分∠ABC(已知)
∴∠1=∠2(角平分线定义)
又∠1=∠D(已知)
∴∠2=∠D(等量代换)
∴AB∥CD(内错角相等两直线平行)
∴∠ABC+∠BCD=180°(两直线平行同旁内角互补)
又∠ABC=55°(已知)
∴∠BCD=125°.
故答案为:∠1;∠2;角平分线定义;∠2;∠D;等量代换;AB;CD;内错角相等两直线平行;∠BCD;两直线平行同旁内角互补;125°.

点评 此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网