题目内容

9.如图,求∠1+∠2+∠3+∠4+∠5+∠6+∠7的度数.

分析 首先根据三角形的外角的性质,可得∠10=∠1+∠9,∠11=∠1+∠8,所以∠10+∠11=∠1+∠9+∠1+∠8=180°+∠1;然后求出(∠2+∠3+∠4+∠11)+(∠5+∠6+∠7+∠10)的度数,再用所得的结果减去180°,求出∠1+∠2+∠3+∠4+∠5+∠6+∠7的度数是多少即可.

解答 解:如图1,
∵∠10=∠1+∠9,∠11=∠1+∠8,
∴∠10+∠11=∠1+∠9+∠1+∠8=180°+∠1,
∴(∠2+∠3+∠4+∠11)+(∠5+∠6+∠7+∠10)
=360°+360°
=720°
∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=720°-180°=540°,
即∠1+∠2+∠3+∠4+∠5+∠6+∠7的度数是540°.

点评 (1)此题主要考查了多边形的内角和外角的性质和应用,要熟练掌握.
(2)此题还考查了三角形的内角和定理,要熟练掌握,解答此题的关键是要明确:三角形的内角和是180°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网