题目内容
17.顺次连接一个四边形各边的中点,得到一个矩形,则原四边形一定是( )| A. | 菱形 | B. | 矩形 | ||
| C. | 对角线相等的四边形 | D. | 对角线垂直的四边形 |
分析 此题要根据矩形的性质和三角形中位线定理求解;首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直,由此得解.
解答
解:已知:如右图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD的中点,求证:四边形ABCD是对角线垂直的四边形.
证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,
根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;
∵四边形EFGH是矩形,即EF⊥FG,
∴AC⊥BD.
故选D.
点评 本题主要考查了矩形的性质和三角形中位线定理,解题的关键是构造三角形利用三角形的中位线定理解答.
练习册系列答案
相关题目
9.若(x+8)(x-4)=x2+px+q,那么p,q的值为( )
| A. | 4,32 | B. | 4,-32 | C. | -4,32 | D. | -4,-32 |