题目内容
如图,由点P(14,1),A(a,0),B(0,a)(0<a<14)确定的△PAB的面积为18,则a的值为_____.
利用图形来表示数量或数量关系,也可以利用数量或数量关系来描述图形特征或图形之间的关系,这种思想方法称为数形结合.你能利用数形结合的思想解决下列问题吗?
(1)如图①,一个边长为1的正方形,依次取正方形面积的,,,…, ,根据图示我们可以知道: ++++…+=________.(用含有n的式子表示)
(2)如图②,一个边长为1的正方形,依次取剩余部分的,根据图示:
计算: +++…+=________.(用含有n的式子表示)
(3)如图③是一个边长为1的正方形,根据图示:
计算: ++++…+=________.(用含有n的式子表示)
如图,一次函数分别交y轴、x 轴于A、B两点,抛物线过A、B两点.
(1)求这个抛物线的解析式;
(2)作垂直x轴的直线x=t,在第一象限交直线AB于点M,交这个抛物线于点N.求当t 取何值时,MN有最大值?最大值是多少?
(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.
下列计算正确的是( )
A. a2•a3=a6 B. (a2)4=a6 C. (2a2b)3=8a6b3 D. 4a3b6÷2ab2=2a2b3
如图,已知一个三角形纸片ACB,其中∠ACB=90°,AC=8,BC=6,E、F分别是AC、AB边上的点,连接EF.(1)如图1,若将纸片ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,且使S四边形ECBF=4S△EDF,求ED的长;
(2)如图2,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上的点M处,且使MF∥CA.
①试判断四边形AEMF的形状,并证明你的结论;
②求EF的长;
(3)如图3,若FE的延长线与BC的延长线交于点N,CN=2,CE=,求的值.
据新浪网调查,在第十二届全国人大二中全会后,全国网民对政府工作报告关注度非常高,大家关注的热点话题分别有:消费、教育、环保、反腐及其它共五类,且关注五类热点问题的网民的人数所占百分比如图l所示,关注该五类热点问题网民的人数的不完整条形统计如图2,请根据图中信息解答下列问题.
(1)求出图l中关注“反腐”类问题的网民所占百分比x的值,并将图2中的不完整的条形统计图补充完整;
(2)为了深度了解成都网民对政府工作报告的想法,新浪网邀请成都市5名网民代表甲、乙、丙、丁、戊做客新浪访谈,且一次访谈只选2名代表.请你用列表法或画树状图的方法,求出一次所选代表恰好是丙和丁的概率.
如图,正五边形FGHMN是由正五边形ABCDE经过位似变换得到的,若AB:FG=2:3,则下列结论正确的是( )
A. 2DE=3MN B. 3DE=2MN C. 3∠A=2∠F D. 2∠A=3∠F
先化简,再求值: ,x在1,2,-3中选取适当的值代入求值.
点A(-3,5)关于x轴对称的点的坐标是( )
A. (-3,-5) B. (3,-5) C. (3,5) D. (-3,5)