题目内容

17.一个容器装有1升水,按照如下方法把水倒出:第1次倒出$\frac{1}{2}$升水,第2次倒出水量是$\frac{1}{2}$升的$\frac{1}{3}$,第3次倒出水量是$\frac{1}{3}$升的$\frac{1}{4}$,第4次倒出水量是$\frac{1}{4}$升的$\frac{1}{5}$,…,第n次倒出水量是$\frac{1}{n}$升的$\frac{1}{n+1}$.按照这种倒水的方法,n次倒出的水量共为$\frac{n}{n+1}$ 升.

分析 根据题目中第1次倒出$\frac{1}{2}$升水,第2次倒出水量是$\frac{1}{2}$升的$\frac{1}{3}$,第3次倒出水量是$\frac{1}{3}$升的$\frac{1}{4}$,第4次倒出水量是$\frac{1}{4}$升的$\frac{1}{5}$,…,第n次倒出水量是$\frac{1}{n}$升的$\frac{1}{n+1}$可知按照这种倒水的方法,这1升水经n次后还有$\frac{1}{2}$+$\frac{1}{2}$×$\frac{1}{3}$+$\frac{1}{3}$×$\frac{1}{4}$+$\frac{1}{4}$×$\frac{1}{5}$+…+$\frac{1}{n}$×$\frac{1}{n+1}$升水.

解答 解:由题意得
$\frac{1}{2}$+$\frac{1}{2}$×$\frac{1}{3}$+$\frac{1}{3}$×$\frac{1}{4}$+$\frac{1}{4}$×$\frac{1}{5}$+…+$\frac{1}{n}$×$\frac{1}{n+1}$
=$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+$\frac{1}{4}$-$\frac{1}{5}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$
=1-$\frac{1}{n+1}$
=$\frac{n}{n+1}$.
故答案为:$\frac{n}{n+1}$.

点评 此题考查分式的加减法,解答此题的关键是根据题目中的已知条件找出规律,按照此规律再进行计算即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网