题目内容

11.如图,正方形ABCD的边长为4cm,点E、F在边AD上运动,且AE=DF.CF交BD于G,BE交AG于H.
(1)求证:∠DAG=∠ABE;
(2)①求证:点H总在以AB为直径的圆弧上;
    ②画出点H所在的圆弧,并说明这个圆弧的两个端点字母;
(3)直接写出线段DH长度的最小值.

分析 (1)根据正方形的性质可得AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,然后利用“边角边”证明△ABE和△DCF全等,根据全等三角形对应角相等可得∠DAG=∠DCG,利用“边角边”证明△ADG和△CDG全等,根据全等三角形对应角相等可得∠DCF=∠ABE,从而证得∠DAG=∠ABE;
(2)①根据全等三角形对应角相等可得∠DCF=∠ABE,从而证得∠DAG=∠ABE,然后求出∠AHB=90°,再根据圆周角定理即可证得;
②以AB的中点O为圆心,OA长为半径画弧,交BD于I;
(3)根据直角三角形斜边上的中线等于斜边的一半,取AB的中点O,连接OH、OD,然后求出OH=$\frac{1}{2}$AB=1,利用勾股定理列式求出OD,然后根据三角形的三边关系可知当O、D、H三点共线时,DH的长度最小.

解答 (1)证明:如图1,在正方形ABCD中,AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,
在△ABE和△DCF中,
$\left\{\begin{array}{l}{AB=CD}\\{∠BAD=∠CDA=90°}\\{AE=DF}\end{array}\right.$,
∴△ABE≌△DCF(SAS),
∴∠ABE=∠DCF,
在△ADG和△CDG中,
$\left\{\begin{array}{l}{AD=CD}\\{∠ADG=∠CDG=45°}\\{DG=DG}\end{array}\right.$,
∴△ADG≌△CDG(SAS),
∴∠DAG=∠DCF,
∴∠DAG=∠ABE;
(2)①如图1,∵∠DAG=∠ABE,∠BAH+∠DAG=∠BAD=90°,
∴∠ABE+∠BAH=90°,
∴∠AHB=180°-90°=90°,
∴BE⊥AG,
∴点H总在以AB为直径的圆弧上;
②如图2,以AB的中点O为圆心,OA长为半径画弧,交BD于I(I是BD的中点),弧的两个端点为A和I.
(3)如图3,取AB的中点O,连接OH、OD,
则OH=AO=$\frac{1}{2}$AB=2cm,
在Rt△AOD中,OD=$\sqrt{O{A}^{2}+A{D}^{2}}$=$\sqrt{{2}^{2}+{4}^{2}}$=2$\sqrt{5}$,
根据三角形的三边关系,OH+DH>OD,
∴当O、D、H三点共线时,DH的长度最小,
DH的最小值=OD-OH=2$\sqrt{5}$-2.

点评 本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,三角形的三边关系,确定出DH最小时点H的位置是解题关键,也是本题的难点.

练习册系列答案
相关题目
19.提出问题:以n边形的n个顶点和它内部的m个点,共(m+n)个点作为顶点,可把原n边形分割成多少个互不重叠的小三角形?

问题探究:为了解决上面的问题,我们将采取一般问题特殊化的策略,先从简单和具体的情形入手:
探究一:以△ABC的3个顶点和它内部的1个点P,共4个点为顶点,可把△ABC分割成多少个互不重叠的小三角形?
如图①,显然,此时可把△ABC分割成3个互不重叠的小三角形.
探究二:以△ABC的3个顶点和它内部的2个点P、Q,共5个点为顶点,可把△ABC分割成多少个互不重叠的小三角形?在探究一的基础上,我们可看作在图①△ABC的内部,再添加1个点Q,那么点Q的位置会有两种情况:
第一种情况,点Q在图①分割成的某个小三角形内部.不妨设点Q在△PAC的内部,如图②;另一种情况,点Q在图①分割成的小三角形的某条公共边上.不妨设点Q在PA上,如图③.显然,不管哪种情况,都可把△ABC分割成5个互不重叠的小三角形.
探究三:以△ABC的三个顶点和它内部的3个点P、Q、R,共6个点为顶点,可把△ABC分割成7个互不重叠的小三角形,并在图④中画出一种分割示意图.
探究四:以△ABC的三个顶点和它内部的m个点,共(m+3)个点为顶点,可把△ABC分割成(2m+1)个互不重叠的小三角形.
探究拓展:以四边形的4个顶点和它内部的m个点,共(m+4)个点为顶点,可把四边形分割成(2m+2)个互不重叠的小三角形.
问题解决:以n边形的n个顶点和它内部的m个点,共(m+n)个点作为顶点,可把原n边形分割成(2m+n-2)个互不重叠的小三角形.
实际应用:以八边形的8个顶点和它内部的2012个点,共2020个顶点,可把八边形分割成多少个互不重叠的小三角形?(要求列式计算)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网