题目内容

16.如图,直线y=-x+b与双曲线$y=-\frac{1}{x}$(x<0)交于点A,与x轴交于点B,则OA2-OB2=(  )
A.1B.2C.3D.4

分析 由直线y=-x+b与双曲线$y=-\frac{1}{x}$(x<0)交于点A可知:x+y=b,xy=-1,又OA2=x2+y2,OB2=b2,由此即可求出OA2-OB2的值.

解答 解:∵直线y=-x+b与双曲线$y=-\frac{1}{x}$(x<0)交于点A,
设A的坐标(x,y),
∴x+y=b,xy=-1,
而直线y=-x+b与x轴交于B点,
∴OB=b
∴又OA2=x2+y2,OB2=b2
∴OA2-OB2=x2+y2-b2=(x+y)2-2xy-b2=b2+2-b2=2.
故选B.

点评 本题考查了一次函数与反比例函数的图形和性质,也考查了图象交点坐标和解析式的关系;此题难度较大.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网