题目内容


如图,O是等边三角形ABC内一点,∠AOB=110°,∠BOC=α,D是△ABC外一点,且△ADC≌△BOC,连接OD

    (1) 求证:ACOD是等边三角形;

    (2) 当α=150°时,试判断△AOD的形状,并说明理由;

    (3) 当α为多少度时,△AOD是等腰三角形?


(1) ∵△ADC≌△BOC,∴DC=OC,∠DCA=∠OCB.∵△ABC为等边三角形,∴∠OCB+∠ACO=∠ACB=60°.∴∠DCA+∠ACO=∠DCO=60°.∴△COD是等边三角形  (2) 当α=150°时,△AOD是直角三角形  理由:∵△ADC≌△BOC,∴∠ADC=∠BOC=150°.又∵△COD是等边三角形,∴∠ODC=60°.∴∠ADO=90。,即△AOD是直角三角形.  (3) ① 要使AO=AD,需∠AOD=∠ADO.∵∠AOD=190°-α,∠ADO=α-60°,∴190°-α=α-60°,∴α=125°.② 要使OA=OD,需∠OAD=∠ADO.∵∠OAD=180°-(∠AOD+∠ADO)=180°-(190°-α+α-60°)=50°,∴α-60°-50°.∴α=110°.③要使AD=OD,需∠AOD=∠OAD,∴190°-α=50°.∴α=140°.

综上所述,当α为125°,110°或140°时,△AOD是等腰三角形.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网