题目内容

5.如图,已知∠ABC=90°,D是直线AB上的点,AD=BC,如图,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF.
(1)求证:△FAD≌△DBC;
(2)判断△CDF的形状并证明.

分析 (1)利用SAS证明△AFD和△BDC全等即可;
(2)利用全等三角形的性质得出FD=DC,即可判断三角形的形状;

解答 解:(1)∵AF⊥AD,∠ABC=90°,
∴∠FAD=∠DBC,
在△FAD与△DBC中,
$\left\{\begin{array}{l}{AD=BC}\\{∠FAD=∠DBC}\\{AF=BD}\end{array}\right.$,
∴△FAD≌△DBC(SAS);

(2)∵△FAD≌△DBC(SAS),
∴FD=DC,
∴△CDF是等腰三角形,
∵△FAD≌△DBC,
∴∠FDA=∠DCB,
∵∠BDC+∠DCB=90°,
∴∠BDC+∠FDA=90°,
∴△CDF是等腰直角三角形;

点评 此题考查了全等三角形的判定与性质的运用,等腰直角三角形的判定及性质的运用.解答时证明三角形全等是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网