题目内容

6.在△ABC中,CO为AB边上的中线,且OC=$\frac{1}{2}$AB,以点O为圆心,OC长为半径画圆,延长CO交⊙O于点D,连结AD,BD,则四边形ADBC是(  )
A.正方形B.矩形
C.菱形D.邻边相等的四边形

分析 根据题意画出图形,根据对角线互相平分的四边形为平行四边形可得四边形ACBD是平行四边形,然后证明AB=CD,再根据对角线相等的平行四边形是矩形可得四边形ADBC为矩形.

解答 解:如图:
∵延长CO交⊙O于点D,
∴DO=CO,
∵CO为AB边上的中线,
∴AO=BO,
∴四边形ACBD是平行四边形,
∵OC=$\frac{1}{2}$AB,
∴AB=CD,
∴四边形ADBC为矩形,
故选:B.

点评 此题主要考查了矩形的判定,关键是掌握对角线相等的平行四边形是矩形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网