题目内容
9.(1)在图中画出第二次平移之后的图形△A′B′C′;
(2)如果将△A′B′C′看成是由△ABC经过一次平移得到的,请指出这一平移的平移方向和平移距离.
分析 (1)根据平移的性质画出图形即可;
(2)连接AA′,根据勾股定理求出AA′的长,进而可得出结论.
解答
解:(1)△A′B′C′如图所示;
(2)连接AA′,∵由图可知,AA′=$\sqrt{{3}^{2}+{4}^{2}}$=5,
∴如果将△A′B′C′看成是由△ABC经过一次平移得到的,那么这一平移的平移方向是由A到A′的方向,平移的距离是5个单位长度.
点评 本题考查的是作图-平移变换,熟知图形平移不变性的性质是解答此题的关键.
练习册系列答案
相关题目
4.
如图,在直角坐标系xOy中,△ABC的三个顶点都在方格纸的格点上,点A的坐标是(-2,0),将△ABC绕点A顺时针旋转90°得到△AB′C′,则点B的对应点B′的坐标是( )
| A. | (1,-1) | B. | (1,1) | C. | (-1,1) | D. | (-1,-1) |
1.向量($\overrightarrow{AB}$+$\overrightarrow{MB}$)+($\overrightarrow{BO}$+$\overrightarrow{BC}$)+$\overrightarrow{OM}$化简后的结果等于( )
| A. | $\overrightarrow{BC}$ | B. | $\overrightarrow{AB}$ | C. | $\overrightarrow{AC}$ | D. | $\overrightarrow{AM}$ |